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Viruses are small obligatory parasites and as a consequence, they have developed sophisticated strategies to
exploit the host cell's functions to create an environment that favors their own replication. A common feature
of most - if not all - families of human and non-human viruses concerns their interaction with the nucleolus.
The nucleolus is a multifunctional nuclear domain, which, in addition to its well-known role in ribosome biogen-
esis, plays several crucial other functions. Viral infection induces important nucleolar alterations. Indeed, during
viral infection numerous viral components localize in nucleoli, while various host nucleolar proteins are
redistributed in other cell compartments or are modified, and non-nucleolar cellular proteins reach the nucleolus.
This review highlights the interactions reported between the nucleolus and some human or animal viral families
able to establish a latent or productive infection, selected on the basis of their known interactions with the nucle-
olus and the nucleolar activities, and their links with virus replication and/or pathogenesis. This article is part of a
Special Issue entitled: Role of the Nucleolus in Human Disease.
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1. Introduction

Viruses are small obligatory parasites and as a consequence, they
have to divert some of the cellular machineries for their own replication.
They have developed sophisticated strategies to exploit the host cell's
functions and to inhibit its intrinsic and innate defense mechanisms in
order to efficiently accomplish their replication cycle. Viral infections
are generally associated with specific diseases affecting one or several
organs or tissues, some of which can be fatal for the host. Accordingly,
studying the interaction between viruses and the cell is extremely infor-
mative, not only to understand the virus properties but also to gain a
better insight into the cell's functions.

The viral genome is a DNA or RNA molecule that encodes viral compo-
nents that allow a latent/chronic or lytic infection. Generally, most DNA
viruses replicate in the nucleus while most RNA viruses replicate in the
cytoplasm. However, exceptions also exist with some DNA viruses and
RNA viruses replicating in the cytoplasm and the nucleus, respectively.
During latent or chronic infection, only a few viral components are syn-
thesized and the viral genome persists in the infected cell. A typical infec-
tious cycle is usually lytic. It includes attachment of the virus to the cell
surface using specific receptor, entry through the plasma membrane to
reach the cytoplasm, production of viral RNAs and proteins, genome
replication, and at the end of the cycle the newly made viral components
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are assembled into progeny virus particles that are released from the
infected cells and spread to new cells.

The consequences of viral infection on host cell functions are diverse.
Surprisingly, despite the important variety of mechanisms, a common
feature of most - if not all - viral families is their interaction with the
nucleolus, one of the best-known nuclear compartments [1-4]. The in-
teraction of viruses with the nucleolus has been the object of an increas-
ing number of studies since the beginning of the 1990s, some of them
establishing a link between their ability to interact with this nuclear
compartment and the outcome of virus replication and pathogenesis.

The nucleolus, the most prominent nuclear domain, is a membrane-
less structure whose existence was established in the 19th century.
Until recently, its most well known role was ribosome biogenesis.
Indeed, the nucleolus forms around the clusters of genes coding for ribo-
somal RNAs arranged in a tandem array, and the transcriptional activity
of ribosomal genes in the nucleolus gives rise to its characteristic ultra-
structural organization: the fibrillar center, surrounded by the dense
fibrillar component, which is bordered by the granular component [5].
During mitosis the nucleolus disassembles, then reassembles at the
end of mitosis. Subsequently, the nucleolus was discovered to be more
than a “ribosome factory” [6]. Studies in the last decades have identified
several thousands of different nucleolar components (proteins and
RNAs) the roles of which have highlighted that the nucleolus is also
involved in other biological functions such as tRNA and mRNA process-
ing, maturation and assembly of ribonucleoprotein complexes, cell cycle
regulation and cellular aging, leading to the notion of a plurifunctional
nucleolus. In addition, nucleoli are dynamic nuclear domains and their
components communicate constantly with other nuclear domains and
with the cytoplasm [4,7-12].
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Therefore, due to the multiple functions fulfilled by nucleoli, it is not
surprising that in cells infected with various types of viruses, nucleoli
are submitted to profound alterations in structure and composition. In-
deed, in addition to the numerous viral components that traffic to and
from the nucleolus, some nucleolar proteins are delocalized out of the
nucleolus, while in other cases non-nucleolar cellular proteins enter
the nucleolus to fulfill other function(s) [1,3]. At present, the roles of
these virally-induced nucleolar perturbations on viral replication and
host cell functions are not fully elucidated for many of them. Even
though the infected cells need to support the synthesis of new viral pro-
teins, only a few studies on viral infection focus on mechanisms related
with ribosome biogenesis demonstrating that viral proteins interact
with rRNAs, inhibit or stimulate rRNA gene transcription, or modulate
pre-rRNA maturation [13-17]. By contrast, numerous studies have
shown that several of the virally-induced modifications of nucleolar
structure and composition rather interfere with other well established
fundamental processes in which they are directly or indirectly involved,
such as cell cycle regulation, apoptosis and translation. In addition, these
studies showed that nucleoli themselves or nucleolar proteins partici-
pate directly in specific processes that are crucial for the outcome of in-
fection, like viral DNA replication, virus assembly, and control of
intracellular trafficking.

The aim of this review is to highlight the interactions reported be-
tween the nucleolus and some viral families, which illustrate the variety
of studies in this field and of their potential relevance to the develop-
ment of treatments against viral infections. To simplify this potentially
huge task, we made the choice to focus on a discrete number of viral
families chosen for their importance in human or animal disease and
their mode of replication. In particular, this review will focus on some
single-stranded RNA viruses belonging to the Flaviviridae, Coronaviridae
and Togaviridae families, and double-stranded DNA viruses belonging to
the Herpesviridae family, which represent viruses replicating in the
cytoplasm or the nucleus of the infected cell, respectively. An abundant
literature, including several reviews has already been published on the
interaction between retro- and lenti-viruses, such the Human Immuno-
deficiency Virus (HIV), with the nucleolus [18-23]. There is also increas-
ing data showing that plant viruses hijack the nucleolus to promote
virus replication [24,25]. The information available on these latter virus-
es was deliberately omitted and we invite the readers to refer to specific
articles for more detailed information on this topic.

2.The nucleolus: a central hub for the replication of pathogenic RNA
viruses?

The majority of RNA viruses replicate in the cytoplasm of the infect-
ed cell where all the infectious cycle takes places, including transcrip-
tion, replication of the RNA genome and assembly of newly infectious
particles. Not surprisingly however, several studies have additionally
described the interaction of a number of these viruses with the nucleus
and in particular the nucleolus [26]. This chapter will focus on four dif-
ferent families of RNA viruses that possess a positive (+) strand RNA
genome (Table 1). These four families contain viruses that are highly
pathogenic in animals and/or primates, including man, and, conse-
quently, most of them have been the focus of recent intensive studies.
This is the case, in particular, for members of the Flaviviridae family
such as Hepatitis C virus (HCV), a widely spread human virus which
causes a chronic infection of the liver which can lead to cirrhosis and
hepatocellular carcinoma [27], or the arthropod-transmitted viruses,
Dengue virus (DENV), West Nile Encephalitis virus (WNV) or Japanese
Encephalitis virus (JEV), which can cause severe hemorrhagic or neuro-
logical syndromes in man [28]. Members of the Coronaviridae and
Arteriviridae families such as the Severe Acute Respiratory Syndrome
coronavirus (SARS-CoV), the avian Infectious Bronchitis virus (IBV)
and the Porcine Reproductive and Respiratory Syndrome virus
(PPRSV) are also considered major pathogens causing severe respirato-
ry diseases in man and animals [29]. Finally, it is of particular interest to

also cite the interactions reported for two members of the Togaviridae
family, the Semliki Forest Virus (SFV) and the Getah-like alphavirus
(GETV) M1 which, even if not considered major pathogens for man,
have attracted interest as anti-cancer tools [30] and could also, by ex-
tension, predict future interesting interactions for other more patho-
genic members of this viral family such as the Chikungunja virus.

2.1. Replicative cycle of positive-strand RNA viruses

Positive-strand RNA viruses are composed of a lipid envelope con-
taining the viral glycoproteins responsible for attachment to the cell
membrane and penetration, surrounding a capsid that contains the
RNA genome. The size and the shape of the assembled capsid can vary
according to the virus but a common feature is that it is composed of
multiple copies of a unique protein, called capsid, nucleocapsid (N), or
core, which is able to bind and condense RNA and thus constitutes a pro-
tective shell for the viral genome. After attachment to the cell surface
and delivery of the RNA in the cytoplasm, the viral genome is immedi-
ately translated into the enzymes required for its replication, which
occurs via a negative (—) strand RNA intermediate. Newly replicated
viral RNA molecules are used for the synthesis of the viral proteins
and as a substrate during particle assembly. All these processes are
accomplished by exploiting virus-encoded enzymes and cellular com-
ponents, in particular cellular membranes which are involved in the
formation of particles from intra-cytoplasmic organelles, mainly the
endoplasmic reticulum and Golgi apparatus [27].

2.2. Viral factors interacting with the nucleolus

Despite the diversity of proteins encoded by the genomes of (+)
strand RNA viruses, it is striking to observe that most of the reported
interactions with the nucleolus concern the same structural protein,
namely the capsid, which under different names has several common
properties among all viral families including its small size (generally
<50 kDa), clusters of basic amino acids (aa), and its ability to bind
viral and sometimes cellular RNA. It is unclear if this finding reflects a
true predilection of the nucleolus for this structural component or if it
simply results from the fact that this is one of the most abundant viral
proteins which is, therefore, easier to detect in particular in a compart-
ment such as the nucleolus where the proteins rapidly shuttle in and
out. Interestingly, some studies have reported the presence of non-
structural viral proteins in the nucleolus. This is the case for the accesso-
ry protein 3b from the SARS-CoV, which was found to predominantly
localize in the nucleolus [31,32]. Further studies indicated that this
protein, which inhibits type I interferon (IFNI) production, could shuttle
from the nucleus and mitochondria but, surprisingly, there was no
further investigation as to its nucleolar localization [33]. Another exam-
ple is provided by the nsP2 protein of SFV, which is a multifunctional
protein essential for viral replication and maturation which was found
localized mostly in the nucleus and nucleoli [34,35]. Surprisingly,
again, this latter property was not re-investigated in further studies,
which focused exclusively on its nuclear localization [33]. Lastly, dele-
tion of the membrane-anchoring domain of the RNA-dependent RNA
polymerase (RARP) NS5B of HCV induced the delocalization of the
protein in the nucleolus also suggesting that this viral enzyme contained
a cryptic nucleolar localization signal (NoLS), allowing its transient traf-
fic through the nucleolus [36].

2.3. Mechanisms of nucleolar import and export of viral proteins

Localization of viral proteins in the nucleolus is frequently not exclu-
sive and sometimes hard to visualize. In some cases, nucleolar localiza-
tion was revealed or enhanced by introducing deletions into domains of
the protein suggesting that the signals involved in nucleolar targeting
were masked by other domains or that this subcellular localization is
restricted to some cleaved forms. This was particularly evident for the
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Table 1
Interactions of selected (+) strand RNA viruses with the nucleolus.
Virus family Virus Name  Viral factors® Cellular proteins® Effects on the host and/or the virus References
Flaviviridae DENV Capsid [41,42]
WNV Capsid (123 aa) HDM2, DDX56, Jabl ~ DDX56 important for virus infectivity [43,44,60,61]
HDM2 localized in the nucleolus and induction of p53-dpt apoptosis
Jab1 protects cells against the capsid cytoxic effects
JEV Capsid B23 B23 important for virus replication [45,130]
Kunjin virus ~ Capsid [46]
HCV Core, NS5B? Nucleolin, B23, PKR  Upregulation of B23 synthesis via reduction of YY1 repressive activity on [36-38,53,62,63,70,131]
B23 promoter
NCL is important for virus replication
NCL found at HCV IRES
Coronaviridae ~ SARS-CoV 3b, Nucleocapsid  B23 Inhibition of B23 phosphorylation [31,32,39,40,132]
Avian IBV Nucleocapsid Nucleolin, p53 Alteration of fibrillarin localization [47,48,133,134]
p53 delocalized in the perinuclear region
Inhibition of cell growth
Arteriviridae PPRSV Nucleocapsid Fibrillarin, HIC Mutation of N prevents its nucleolar localization reduces viral replication [17,49,51,52,135]

in vitro, delays viremia and increases NAD titers in vivo.

Togaviridae SFV nsP2, capsid

Mutation of nsP2 prevents its nuclear localization and reduces viral spread

[34,35,57,73-76,136]

and neurovirulence in vivo

GETV M1 P21waf

S-phase arrest and apoptosis in glioma cells [72]

2 Viral proteins shown to localize in the nucleolus.

" Nucleolar proteins interacting with viral factor or cellular, non nucleolar proteins shown to be translocated into the nucleolus by the virus or the viral proteins.

capsid proteins, which for many viruses naturally exist in immature and
mature forms produced by cleavage of N- or C-terminal domains. For
example, the Core protein from HCV which normally mainly localizes
in the cytoplasm where it associates with the endoplasmic reticulum
and lipid droplets, was found predominantly in the nucleus and the nu-
cleolus upon deletion of the C-terminal hydrophobic region, thus
confirming previous data showing the presence of this protein in the
nucleus and the nucleolus of hepatocytes from chronically infected
HCV patients [37,38]. Similarly the SARS-CoV N protein mainly localized
in the cytoplasm of the infected cells but could be visualized in the nu-
cleus, and particularly in the nucleolus, using deletion mutants [39,40].
By contrast, the DENV capsid protein could be clearly observed in the
nucleoli of cells expressing this protein alone or infected with the
virus [41,42]. Similar observations were made for the capsid protein
from other arthropod-borne viruses such as those derived from WNV
[43,44], JEV [45], and Kunjin virus [46] as well as from several members
of the Coronaviridae and Arteriviridae families [47-49].

Many parameters control the nucleolar localization of these multi-
functional proteins. In particular their presence in the nucleolus varied
according to the mode of nuclear import, the interaction with nucleolar
components and the kinetics of nuclear import and export. Despite the
fact that most of the capsid proteins are small in size, and thus potential-
ly able to passively diffuse through the nuclear pores, an active energy-
dependent mechanism was demonstrated to be responsible for their
nuclear entry. Accordingly, nuclear localization signals (NLS) were iden-
tified in nearly all the capsid proteins. Identification of a NoLS proved
more problematic since a consensus NoLS is not available and in several
examples the signal required to target the protein to the nucleolus was
imbedded in the NLS-containing regions. However, in some cases nucle-
olar import of capsid proteins was shown to be mediated by distinct and
well-identified NoLS as is the case for the JEV, IBV, and PPRSV capsid
proteins [45,50-52]. Besides the presence of basic amino acid residues,
identified NoLS sequences are all different and most of them likely act
by mediating the interaction with cellular proteins and/or RNAs that
transit through the nucleolus or are constitutive components of this
nuclear body such as nucleolin or B23 [53].

Similarly to their import in the nucleus and the nucleolus, other
domains of these proteins are responsible for their export into the cyto-
plasm, the site where the assembly of infectious particles takes place.
Not surprisingly, several groups identified nuclear export signals
(NES), which mediate the translocation of these proteins into the cyto-
plasm via a CRM1-dependent [54] or -independent mechanism [55,56].
Alternatively, nucleolar/nuclear export can be due to association with

cellular factors as is the case for the capsid protein of WNV, which is
translocated to the cytoplasm when associated with Jab 1 [43]. Interest-
ingly, the rate of nuclear/nucleolar import versus export correlated with
the predominant localization of the protein. In particular, some studies
have revealed that import of the capsid proteins of SFV and DENV into
the nucleolus was very rapid and that it could occur at very early stages
during infection before the assembly of infectious particles [41,57]. Live
cell imaging associated with photo-bleaching experiments further indi-
cated that Arterivirus capsid protein was not permanently sequestered
into the nucleolus and that the apparently higher distribution of this
protein in the nucleolus relative to the cytoplasm, when expressed
alone, was due to a higher nuclear import rate [58]. Interestingly, import
rates into the nucleolus varied according to the NoLS sequence consid-
ered [59].

2.4. Role of interactions of viral factors with the nucleolus or the nucleolar
components

The reason why proteins from cytoplasmic RNA viruses localize to
the nucleolus is presently unclear and several nonexclusive hypotheses
can be proposed. First, this phenomenon could be seen as an innate
cellular defense aiming to retrieve viral proteins away from the cyto-
plasm where virus replication and assembly occur. However, this
hypothesis does not fit with the observation that viral proteins usually
are not permanently sequestered in the nucleolus and that their passage
through this nuclear compartment is a very dynamic process. In addi-
tion, the amount of viral proteins found in the nucleolus can be
extremely low and, thus, not compatible with an efficient anti-viral
mechanism. Alternatively, passage through the nucleolus could be a
way for the cell to post-translationally modify the viral proteins and to
inhibit or modify their function. Indeed, capsid proteins from most
RNA viruses are not only structural factors involved in virion assembly
but also multi-functional regulatory proteins involved in critical pro-
cesses such as the control of cell division and apoptosis. Still, this
hypothesis is not consistent with the observation that in many situa-
tions the interaction of viral proteins with the nucleolus was demon-
strated to be important for efficient viral replication.

Therefore, the nucleolus is rather considered as playing a positive
role in viral replication. In particular, the interaction with the nucleolus
could be a way for the virus to export into the cytoplasm nucleolar fac-
tors required for its replication. Many examples exist among viruses of
the Flaviviridae family. The capsid protein of WNV was shown to bind
to the nucleolar RNA helicase DDX56 and relocate it to the cytoplasm
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where this cellular factor played a role in a post-replicative step of virus
assembly [60,61]. Accordingly, knockdown of DDX56 using siRNA
induced a more than 100 fold decrease in the production of infectious
particles and over-expression of the capsid-binding region of DDX56
severely reducing the infectivity of the virus thus opening interesting
perspectives for future therapeutic interventions. Similarly, the core
protein of JEV was reported to interact with and delocalize the nucleolar
protein B23 to the cytoplasm. Nucleolin, another abundant nucleolar
protein, was found to co-localize with the NS5B protein of HCV in the
perinuclear region and a truncated form of NS5B, lacking the
membrane-anchoring domain, co-localized with nucleolin in the nucle-
olus. This suggests that the wild type viral protein was able to transit
through the nucleolus and delocalize nucleolin in the cytoplasm. Ac-
cordingly, knockdown of nucleolin reduced HCV replication [36,62,63].

Besides providing cellular factors for viral replication, interaction
with the nucleolus may indirectly help the virus by modifying the cell's
status. Several interesting studies point to a relationship between the
interaction of viruses with the nucleolus and apoptosis. WNV is
known to trigger cell death through either apoptosis or necrosis
[64,65]. However, as compared to other viruses, WNV has a relatively
long replicative cycle and apoptosis occurs only at late stages of the
infectious process [66]. Older studies indicated that the capsid protein
could induce p53-dependent apoptosis by sequestering HDM2 into
the nucleolus [44]. This effect, however, may be counterbalanced by
the interaction of capsid with Jab1, a subunit of the COP9 signalosome
complex, which can delocalize the WNV capsid in the cytoplasm, induce
its degradation and prevent its cytotoxic effect [43]. Importantly, a
recent study indicated that a shorter (105 aa) isoform of the WNV
capsid, without the 18-aa signal peptide corresponding to the mature
protein found in infected cells, rather exerted an anti-apoptotic effect
[66]. Interestingly, the first 15 aa at the N-terminus of the immature
capsid were found to mediate interaction with Jab1 [67]. Altogether,
these results suggest that several mechanisms exist to control the
pro-apoptotic effect of the longer (123 aa) immature capsid protein,
which was described to go the nucleolus. The mature form (105 aa)
blocks apoptosis, probably to allow sufficient time for the virus to repli-
cate. It is likely that the mature capsid is also able to localize in the
nucleolus and further studies should be performed to determine the
effect of the nucleolar localization of the capsid on this phenomenon.
Similar debate on the pro- or anti-apoptotic activities exists for the
core protein of HCV [68]. Induction or not of apoptosis is of crucial
importance to understand the mechanisms underlying both the liver
damage induced by the virus during chronic infection with HCV and
carcinogenesis. The core protein of HCV is considered to be a potential
oncoprotein [69]. As for the WNV capsid, several isoforms of the HCV
core exist, which derive from an immature full length protein that is
sequentially cleaved into truncated proteins, the latter being able to
localize to the nucleus and the nucleolus [70]. Studies conducted on
the core protein have shown that it could both induce and counteract
apoptosis [38,71]. In particular, with regard to its interaction with the
nucleolus, Realdon et al. have shown that the expression of the truncat-
ed version of the core protein alone induced higher levels of apoptosis
than the full-length protein. In addition, induction of apoptosis could
be related to translocation of PKR into the nucleolus [38]. A later inter-
esting example of apoptosis induced upon translocation of a cellular
protein in the nucleolus derives from the study of the Getah-like
alphavirus M1. Infection of glioma cells with the M1 alphavirus was
shown to induce arrest of the cells in S phase and apoptosis. This effect
was further shown to be due to a down-regulation of the cyclin-
dependent kinase inhibitor p21Waf1, possibly through its translocation
into the nucleolus [72]. Interestingly, studies conducted on another
member of the Alphaviridae family, the SFV, have shown that both the
non-structural protein nsP2 and the capsid can localize to the nucleolus
[34,35,57,73,74] and that abrogation of the capacity of nsP2 to localize in
the nucleus reduced the cytotoxic effect of the virus [75]. Therefore, it is
likely that even for the M1 alphavirus, translocation of p21Waf1 into the

nucleolus may be due to its direct or indirect association with a viral
constituent.

2.5. Effect on virus induced pathogenesis

JEV is the leading cause of arthropod-borne virus encephalitis in
Asia. As with nearly all Flaviviruses, the mature capsid protein is local-
ized not only in the cytoplasm but also in the nucleolus. A very interest-
ing study examined the effect of point mutations in the capsid protein
that affected its ability to localize in the nucleolus. Viruses bearing
such mutations produced a core protein, which was exclusively cyto-
plasmic in both insect and mammalian cells. Interestingly, the analysis
of this mutant virus in vitro, indicated that it was impaired for replica-
tion, in particular in mammalian cells with more than 100 fold lower ti-
ters than those reached with the wild type virus and a larger number of
defective particles [45]. In addition, revertant viruses rapidly emerged
in vitro, indicating that nucleolar localization was important for virus
growth. Reduced viral growth and the appearance of revertants were
also observed after direct intra-cerebral inoculation of the mutant
virus in mice. Neurovirulence, however, was not affected and even in-
creased with the mutant virus. By contrast, neuroinvasiveness, mea-
sured by its ability to reach the central nervous system (CNS) after
peripheral inoculation, was severely affected [45]. This criterion reflects
the ability of the virus to replicate in the peripheral organs, in particular
in the lymphatic tissues, before crossing the blood-brain barrier. There-
fore, it is possible that the default in the nucleolar localization of the JEV
capsid protein prevented replication of the virus in the peripheral tis-
sues at a level sufficient to access the CNS. Similarly a reduced mortality
was observed after intra-cerebral injection of a SFV strain coding for a
mutated nsP2 protein impaired for its nuclear localization [76].

Another very interesting example is provided by the study of the
PPRSV N protein. PPRSV is the causative agent of a severe infectious dis-
ease of swine that causes significant economic losses in the pig industry.
Lee et al. examined the effect of a mutation affecting the nuclear and nu-
cleolar localization of N protein in infected cells. Mutant viruses
displayed a reduced replication resulting in a 100-fold decrease in
viral titers. More importantly, intranasal inoculation of virus in pigs in-
dicated that the mutant form delayed viremia and induced a higher
level of neutralizing antibodies. Interestingly, a mutation at the NLS
locus of N, enabling the protein to go to the nucleolus, was detected in
the virus extracted from the tonsils of all the animals injected with the
mutant virus. This latter result indicated that a strong selection pressure
had been applied to this region of N, in order to allow persistence of the
virus in vivo. Interestingly, further studies with a reversion-resistant
mutant virus confirmed the previous observation and further indicated
that mutant virus persisted in the tonsils at a reduced level [77,78].

3. Nucleolar modifications induced by herpes viruses: cellular
proteins that leave or reach the modified nucleolus participate in
virus life and/or alteration of cellular processes

This part of the manuscript is dedicated to studies in the field of infec-
tion by herpes viruses, especially herpes simplex virus type 1 (HSV-1),
human cytomegalovirus (HCMV), and Kaposi sarcoma-associated herpes
virus (KSHV) also known as human herpesvirus 8 (HHV8). Several well-
documented data have already illustrated the important role played by
ORF57 encoded by KSHV during the lytic infection and the function of
its nucleolar localization in the nuclear export of intronless viral RNAs
[79-81]. In this chapter we will instead focus on the role of nucleolin,
the most abundant nucleolar protein that leaves the nucleolus during
HSV-1 and HCMV infection to reach the viral replication compartments
(VRCs) and of angiogenin, a secreted non-nucleolar protein which is
up-regulated after KSHV infection and then targeted to the nucleolus.

Herpes viruses have a large DNA genome and replicate in the cell nu-
cleus. After primary infection, herpes viruses have the ability to remain
in a latent state in vivo, which is characterized by the persistence of the
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viral genome, the expression of a limited number of genes and the
absence of virus production. The latent virus, which persists for the
life span of the host, can be reactivated periodically, and the viral
immediate-early, early, and late genes expressed in a coordinated fash-
ion giving rise to a lytic productive viral cycle, which leads to the
production of infectious particles and eventually to cell death due to
lysis [82]. Viral proteins expressed during the latent and the lytic phases
contribute to the pathogenesis of the virus-associated diseases. Many
herpes virus infections are responsible for cutaneous manifestations
[83]. Among herpes viruses, HCMV is an important pathogen, and
HCMV infection is considered as the most common cause of human
congenital microbial infections. Recent reports also suggest that HCMV
is associated with some human malignancies [84]. Inmunocompro-
mised patients develop severe HSV and HCMV infections with signifi-
cant morbidity and mortality [85,86]. KSHV, which was discovered in
1994, is the causative agent of Kaposi's sarcoma that occurs frequently
in immunosuppressed patients. The lesions of Kaposi sarcoma are char-
acterized by a proliferation of small vessels surrounding more ectatic
vessels induced by angiogenic factors.

3.1. Nucleolin is delocalized in viral replication compartments in HSV-1- and
HCMV-infected cells and fulfills different functions

Nucleolin is the most abundant and probably most-studied protein
of the nucleolus and has been shown to shuttle from the nucleolus to
the nucleoplasm, the cytoplasm, and the plasma membrane. It is a
multifunctional protein that undergoes many post-translational modifi-
cations, including phosphorylation, glycosylation, and acetylation that
relate to its localization and function(s). In addition to its role in
ribosome biogenesis in the nucleolus, it participates in many essential
cellular processes, such as chromatin remodeling, DNA recombination
and replication, RNA transcription by RNA Pol I and II, rRNA processing,
mRNA metabolism, cell proliferation, cytokinesis, and apoptosis
[87-91]. Nucleolin is involved in the infection process of numerous
RNA and DNA viruses where it plays important roles during different
steps of the viral life cycle. It binds directly or indirectly to viral factors
and is involved in the viral life cycle and, therefore, in virus-associated
pathogenesis [62,63,92-95]. For example, nucleolin interacts in vitro
with the NS1 protein of influenza A virus, and it co-localizes with NS1
protein in infected cells. However, its role is not yet known [92].
Nucleolin present at the surface of some types of cells is a co-receptor
for the entry of HIV, human parainfluenza virus type 3, respiratory syn-
cytial virus, and probably of Crimean-Congo hemorrhagic fever virus
and of Japanese encephalitis virus [96-100]. Knockdown of nucleolin
mobilizes adeno-associated virus particles to the nucleoplasm [101].
Nucleolin interacts with several viral RNAs and is suspected of regulat-
ing viral and cellular RNA metabolism, including splicing and translation
[102-104]. Nucleolin also has the ability to interact with viral genomic
RNAs and to positively or negatively regulate viral replication
[63,105,106]. Nucleolin is also linked to cervical carcinoma induced by
human papilloma virus 18 by controlling the expression of viral onco-
genes in a cell cycle-dependent manner [107,108].

In HSV-1 and HCMV-infected cells, the formation of the VRCs in the
nucleus of infected cells is accompanied by a profound modification of
the structure and the composition of nuclear domains, including the
nucleolus. Many nucleolar proteins are delocalized out of the nucleolus.
This is the case for nucleolin that is targeted to the VRCs of these two
viruses, and it participates in different aspects of their life cycle.

3.1.1. Nucleolin is involved in HSV-1 nuclear egress

Soon after HSV-1 infection, nucleoli undergo drastic morphological
and structural changes. Nucleolin, B23/NPM, fibrillarin, UBF, and
RPA194 nucleolar proteins progressively leave the nucleolus; nucleolin,
B23, and UBF are delocalized into the VRCs, which are the sites of repli-
cation, transcription, and encapsidation of HSV-1 genomes [109-111].
During HSV-1 infection nucleolin expression is up regulated contrary

to most of the cellular proteins that are down regulated. This suggests
that nucleolin is required for the outcome of infection. The delocaliza-
tion of nucleolin out of the nucleolus is under the control of the UL24
viral protein [110]. Moreover, viral infection and viral production are
inhibited in cells where nucleolin is knocked down, indicating that
nucleolin is required for HSV-1 life cycle [109]. A series of convergent re-
sults from independent laboratories strongly suggests that nucleolin is
involved in the nuclear egress of viral particles at the end of the viral
cycle by a mechanism that is not yet elucidated. Indeed, inhibition of
nucleolin expression reduced capsid accumulation as well as the
amount of encapsidated viral DNA in the cytoplasm of infected cells
[112]. In addition, nucleolin was present in a protein complex contain-
ing UL12 viral protein that was suspected of being involved in viral
DNA maturation and nuclear egress [112]. Further studies indicated
that nucleolin interacted directly with the structural US11 viral protein
and was required for nucleocytoplasmic shuttling of US11 [113]. There-
fore, the association of nucleolin with these two viral proteins upholds
its role in HSV-1 egress.

3.1.2. Nucleolin is required for maintaining the architecture of HCMV
replication compartments

Nucleolin is also important for the life cycle of HCMV where it con-
tributes to the organization of the VRCs. As in the case of HSV-1,
nucleolin is up regulated and redistributed throughout the nucleus dur-
ing HCMV infection [114]. Nucleolin was found specifically associated
with the viral UL44 DNA polymerase processivity factor in infected
cells. UL44 could associate with nucleolin in the absence of DNA and
of any other viral protein [114,115]. Nevertheless, the inhibition of
nucleolin expression impaired viral DNA synthesis and virus produc-
tion. UL44 is located at the periphery of the viral replication compart-
ments where it is concentrated in a peripheral layer where viral DNA
synthesis occurs. It has been shown that nucleolin surrounds UL44 at
the border of the VRCs and partially co-localized with UL44 [115].
Results obtained from nucleolin knock-down cells suggest that
nucleolin is required for the correct formation of the VRCs by targeting
UL44 at the periphery of the VRCs which consequently promotes viral
genome synthesis.

These two examples demonstrate that nucleolin plays different roles
in the infection lytic process of two different viruses belonging to the
same family. In both cases, knock down of nucleolin impairs viral infec-
tion and very probably the associated diseases.

3.2. Angiogenin is targeted in the nucleolus upon KSHV infection and is
involved in both the replication of the virus, and in the modulation of
cellular processes

The cells infected with KSHV in Kaposi sarcoma are spindle cells that
display endothelial markers. KSHV is also linked to two B-cell lympho-
proliferative diseases, primary effusion lymphoma and multicentric
Castleman disease. KSHV latent genes drive cell proliferation, and coun-
teract apoptosis, while both the latent and lytic viral genes induce
neoangiogenic inflammatory networks. Both latent and lytic infections
of KSHV play a role in tumorigenesis. It has been recently shown that
KSHV infection of endothelial cells induces a high expression of
angiogenin and its localization to the nucleolus [16]. This is correlated
with the induction of cell proliferation and the formation of new
blood vessels.

Angiogenin is a protein of 14 kDa known as a potent inducer of
neovascularization as it mediates the formation of new blood vessels.
Its expression is often up regulated in various cancers, and this is linked
with cancer progression and poor prognosis. Angiogenin is a secreted
protein, which belongs to the RNase family. However, it is endocytosed
by relevant cell types, then translocated to the nucleus where it accu-
mulates in the nucleolus. Angiogenin contains a nucleolar targeting sig-
nal corresponding to residues 31-35 [116]. Once in the nucleolus,
angiogenin binds to the CT rich specific angiogenin-binding elements
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identified in the gene encoding rRNA (rDNA) and stimulates rRNA syn-
thesis and, therefore, ribosome biogenesis and cellular proliferation
[117]. Internalization and translocation of angiogenin to the nucleolus
are required for the induction of rDNA transcription and for its activity
in angiogenesis [118-120].

Results obtained from sub-confluent endothelial cells infected
de novo with KSHV revealed that the virally-induced angiogenin was
targeted to the nucleolus where it bound to the promoter present in
the 45S rDNA, increasing the synthesis of rRNA. This leads to the
augmentation of the survival of KSHV-infected endothelial cells due to
the anti apoptotic and proliferative effect of angiogenin [16]. Interest-
ingly, the nucleolar localization of angiogenin was crucial for these
effects, since they were greatly reduced or abolished when the nuclear
translocation of angiogenin was specifically blocked [16]. Importantly,
in KSHV-latently-infected cells, the inhibition of the nuclear transloca-
tion of angiogenin resulted in the inhibition of viral latent LANA-1
gene expression, in the reactivation of the latent viral genome and the
induction of the lytic cycle, leading to cell death [121]. Moreover, the
increased and sustained induction of angiogenin needs the expression
of KSHV genes. Since the expression of the lytic ORF74 viral gene plays
roles in angiogenin expression, it has been speculated that ORF74
could induce angiogenin expression [16]. A series of data suggests that
KSHV utilizes angiogenin to maintain its latency, probably by activating
the PLC-y pathway [121-123].

Altogether, these data demonstrate that KSHV-induced angiogenin
and its localization to the nucleolus are involved both in the control of
the viral cycle, and in the modulation of different cellular pathways,
including rRNA synthesis, cell proliferation, apoptosis, and angiogenesis.
There are several lines of evidence showing a role for p53 in angiogenin
function in infected cells [124,125]: LANA-1 and angiogenin were found
in the same complexes containing p53. However, neither p53 nor
another viral protein was required for LANA-1 and angiogenin interac-
tion. In addition, blocking the nuclear transport of angiogenin resulted
in the modification of p53 expression and in its intracellular redistribu-
tion in KSHV(+) cells. It has been suggested that LANA-1 and angiogenin
sequester p53 in the nucleus in an inactive form, and that angiogenin,
possibly through p53-mediated pathways, maintains the survival of
KSHV infected cells and its latency.

4. Conclusion

Altogether, studies conducted on the interaction of viruses with the
nucleolus have clearly indicated that this nuclear body plays a major
role in their life cycle, independent of their replication site and of
whether they are the causative agents of acute or chronic/latent infec-
tions. However, most studies have focused on very specific interactions
which certainly under-estimate what is going on during natural infec-
tions. In particular, many studies have been performed by individually
expressing viral proteins. Therefore, a more comprehensive view of
the nucleolus-virus interaction should include analyses in the context
of the whole virus and possibly in vivo to establish a link with the
virus-induced pathology. Recent interesting work examining the large
scale effect of virus infection on the nucleolar proteome provides excel-
lent examples showing directions for future studies [124,126-129].
These approaches will help both in understanding the role of viral and
cellular components that traffic in or out the nucleolus during viral
infection, and designing novel classes of molecules that target these
factors or any of their partners capable of inhibiting virus growth, cell
proliferation, or tumor formation.
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